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Balmer Support and the Classification Theorem

The Mathematical Landscape is Large

Categories C are pervasive in all fields of mathematics
• Algebra

• C = VectF;
• C = rep(G);
• . . .

• Topology

• C = Top;
• C = CW;
• . . .

• Geometry

• C = SmMan;
• C = Schemes;
• . . .

• . . .

© David Rubinstein 3



Balmer Support and the Classification Theorem

The Mathematical Landscape is Large

Categories C are pervasive in all fields of mathematics
• Algebra

• C = VectF;
• C = rep(G);
• . . .

• Topology

• C = Top;
• C = CW;
• . . .

• Geometry

• C = SmMan;
• C = Schemes;
• . . .

• . . .

© David Rubinstein 3



Balmer Support and the Classification Theorem

The Mathematical Landscape is Large

Categories C are pervasive in all fields of mathematics
• Algebra

• C = VectF;
• C = rep(G);
• . . .

• Topology

• C = Top;
• C = CW;
• . . .

• Geometry

• C = SmMan;
• C = Schemes;
• . . .

• . . .

© David Rubinstein 3



Balmer Support and the Classification Theorem

Classification Goals: A mentsh trakht un Got lakht

Goal: classify the objects in a category up to isomorphism:

• Classify finite dimensional vector spaces;

• Classify all finite dimensional representations of a group G;

• Classify all low dimensional CW- complexes;

• . . .
Unfortunately, we are confronted with "wild classification problems"

• Can’t classify all finite dim representations of group G in positive characteristic case;

• Can’t classify finite CW complexes up to homotopy equivalence;

• No more hope for classifying all complexes of sheaves on an algebraic variety V;

• . . .
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Balmer Support and the Classification Theorem

Change in Paradigm

Important development in last few decades: change the category, and work "stably," in
some "stable" category:

• rep(G) stab(kG)

• HTop SHfin

• R-Mod Dperf(R)

• . . .
These "stable" categories all have a tensor-triangulated category structure in common.

• Instead of classifying objects "on the nose," classify objects "up to the
tensor-triangulated structure"

• Regard objects as being equivalent if they can build each other using the tt-structure

• Technically after a classification the thick tensor ideals
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Balmer Support and the Classification Theorem

Some Historical Examples

Theorem (Benson-Carlson-Rickard 1997)

Let k be a field of char p dividing the order of a group G. There is a bijection between

{Thick ⊗ -ideals of stab(kG)}
∼−→ {Specialization Closed subsets of Proj(H•(G,k))}

C −→ ⋃
x∈C

VG(x)

Theorem (Neeman-Thomason)

Let R be a commutative ring. There is a bijection

{Thick ⊗ -ideals of Dperf(R)}
∼−→ {Thomason Subsets of Spec(R)}

C −→ ⋃
x∈C

supph(x)
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Balmer Support and the Classification Theorem

Support Theories

• These classifications were accomplished using various notions of "support"

• Greatly clarified and unified via the work of Paul Balmer (2005)

• Given essentially small tt-category K get topological space

Spc(K) = {P ⊊ K : P is a prime ideal}

• Equipped with a closed subset supp(x) ⊆ Spc(K) for all x ∈ K
• The pair (Spc(K), supp) is the universal space with well-behaved notion of

support
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Balmer Support and the Classification Theorem

Classification Theorem and Examples

For mild assumptions on K there is a bijection

{Thick⊗ -ideals of K}
∼−→ {Thomason Subsets of Spc(K)}

C −→ ⋃
x∈C

supp(x)

• Thomason subset = union of closed subsets with quasi-compact complement. (In
noetherian context, Thomason= specialization closed)

• ⟨x⟩ = ⟨y⟩ ⇐⇒ supp(x) = supp(y)

Goal: Determine the Balmer spectrum for various tt-categories- and therefore deduce the
classification in that context:

• Spc(stab(kG)) ∼= Proj(H•(G,k))

• Spc(Dperf(R)) ∼= Spec(R)

• . . .
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Balmer Support and the Classification Theorem

Limiting factor of Balmer Support

• Many interesting tt-categories are really some "finite" piece of some "larger"
tt-category

• stab(kG) ⊂ Stab(kG)
• SHfin ⊂ SH
• Dperf(R) ⊂ D(R)

• This "finite" idea can be made precise via the concept of "compact objects"

• The large, non-compact objects, however, are very interesting!

• Objects representing cohomology theories are not compact in SH
• There are major open questions about the structure of the larger objects (e.g.

The telescope conjecture)
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Balmer-Favi Support and Stratification

How to Classify the Big Objects

• Goal = understand the structure of a "large" tt-category T

• Similar to the compact case, after a classification of the "localizing tensor ideals"

• In this case, there is no "Balmer spectrum" for T - less clear how to define a
"universal" notion of support for non-compact objects

e.g.) For x compact, supp(x) will be closed, but this is not expected for
non-compact objects

• Nonetheless, been some success using novel theories of support to develop such
classifications in noetherian contexts (BIK, Neemen, ect)

• In recent work Barthel, Heard and Sanders (BHS, 2021) developed a support theory
for noetherian large tt-categories T

• There is no "Spc(T )" but can consider Spc(T c)
• The support for arbitrary objects will be a subset of Spc(T c)
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Balmer-Favi Support and Stratification

Stratification

Sanders, et al use this support to show that for many noetherian tt-categories there is a
bijection

{Localizing ⊗ -ideals of T }
∼−→ {Arbitrary subsets of Spc(T c)}

L → ⋃
t∈L

Supp(t)

When such a category admits this bijection, they say the category is stratified.
• Develop a framework for deducing such a bijection

• Involves showing a certain minimality condition at each prime P
• Important point: Can work "locally" at each prime P

Many noetherian categories are stratified in this sense:
• Stab(kG) the large stable module category;

• D(R) the unbounded derived category for R noetherian ring (fails spectacularly for R
not noetherian);

• D(X) for X noetherian scheme

• . . .
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Motives and their Derived Categories

Some Historical Comments

• "Motives" were originated by Grothendieck and his students in the 1960s in their
study of algebraic cycles and cohomology theories in algebraic geometry

• Idea: should be a "universal cohomology theory" (motivic cohomology theory) in
algebraic geometry

• Not much success in constructing this abelian category of motives

• Instead Voevodsky was able to construct a "derived category" of motives, denoted
DM(F)

• This theory greatly increased our understanding of motivic cohomology.

• Prove some longstanding fundamental conjectures in algebraic geometry (e.g. The
Milnor conjecture and the Bloch-Kato conjecture).
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Motives and their Derived Categories

Necessary Facts about DM(F,R)

• DM(F,R) is a "large" tensor triangulated category and there is an associated "motive
functor"

R : Sm/F → DM(F,R)

• There are invertible objects R(n) ∈ DM(F,R) for each n ∈ Z, such that
R(n)⊗ R(m) = R(n+m) called the Tate Twists.

• The motivic cohomology groups for a variety X are then defined as

Hm,n(X) = homDM(F,R)(R(X),R(n)[m])

The category DM(F,R) is extremely complex
• Idea: study first a "piece" of the category; the Tate motives

• The localizing subcategory generated by the Tate twists is the (large) category of Tate
motives, denoted by DTM(F,R).
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Motives and their Derived Categories

Étale Motives

There is a similar story to tell with so called étale motives.

• There is a (large) derived category of étale motives, denoted DMét(F,R), again with
an étale motive functor:

Rét : Sm/F → DMét(F,R)

• As before, there are invertible objects Rét(n) satisfying the same tensor product
formula

• Again first study DTMét(F,R), the localizing subcategory generated by étale Tate
twists

• There are analogous étale motivic cohomology groups for a variety X
These two constructions are very similar: there is an "étale sheafification" functor

αét : DM(F,R) → DMét(F,R)

Moreover,
• Whenever Q ⊂ R, αét is an equivalence of categories.
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My Problem: Stratification for DTM(Q,Z)

The Balmer spectrum of DTM(Q,Z)c

Theorem (Gallauer 2019)

(1) The Balmer spectrum of DTM(Q,Z)c is the following picture:

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

In this picture the specialization relations are pointing upwards.

(2) Spc(DTMét(Q,Z)c) ∼= Spec(Z)

(3) The étale sheafification map induces a map Spec(Z) Spc(αét)−−−−−−→ Spc(DTM(Q,Z)c) which is
a homeomorphism onto the subspace {mo, ep}
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My Problem: Stratification for DTM(Q,Z)

Remarks on These Computations

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

Let us explain what these mp, ep,m0 are:

(mp): kernal of map γ∗
p : DTM(Q,Z)c → DTM(Q,Z/pZ)c . A result of Gallauer is

that this kernal coincides with those motives whose mod-p motivic cohomology
vanishes.

(ep): kernals of the composite

DTM(Q,Z)c γ∗
−→ DTM(Q,Z/pZ)c αét−−→ DTMét(Q,Z/pZ)c

Again, this kernal coincides with those motives whose mod-p étale cohomology
vanishes.

(m0): kernal of the rationalization map γ∗ : DTM(Q,Z)c → DTM(Q,Q)c, which
coincides with those motives whose rational motivic cohomology vanishes.
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My Problem: Stratification for DTM(Q,Z)

Remarks on These Computations

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

• Morally there are only 3 flavors of primes in Spc(DTM(Q,Z)c)

• Reduce the problem to each "vertical slice" in the spectrum and just consider the 3
primes in each slice
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My Problem: Stratification for DTM(Q,Z)

How To Establish Minimality at the Primes

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

(mp): Suffices to pass to the "residue field" DTM(Q,Z/pZ).

• Gallauer proves that DTM(Q,Z/pZ)c ∼= Db
fil(Z/pZ) is equivalent to the

filtered bounded derived category of Z/pZ
• Does this lift to the large categories?

(ep): Have successfully shown minimality for these

• Gallauer showed the local categories at the primes ep are just DTMét(Q,Zp)

• Again pass to the residue field DTMét(Q,Z/pZ). The Rigidity Theorem
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My Problem: Stratification for DTM(Q,Z)

Final Comments and Summery

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

• In summary, we want to get a classification for the localizing tensor ideals for
DTM(Q,Z).

• Using the results of Sanders, et al we are tasked with checking a certain minimality
condition at every prime.

• In this case, we can first take vertical slices of the spectrum, and then check
minimality at local categories for mod p and rational coefficients
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