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The Mathematical Landscape is Large

Categories C are pervasive in all fields of mathematics

o Algebra
o C = Vecty;
e C =rep(G);
e ...

e Topology
o C =Top;
e C=CW,

e ...
o Geometry

o C =SmMan;
e C = Schemes;
(G
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Classification Goals: A mentsh trakht un Got lakht

Goal: classify the objects in a category up to isomorphism:

o Classify finite dimensional vector spaces;
o Classify all finite dimensional representations of a group G;
o Classify all low dimensional CW- complexes;
O 600
Unfortunately, we are confronted with "wild classification problems"
e Can’t classify all finite dim representations of group G in positive characteristic case;
e Can't classify finite CW complexes up to homotopy equivalence;

o No more hope for classifying all complexes of sheaves on an algebraic variety V;
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Change in Paradigm

Important development in last few decades: change the category, and work "stably," in
some "stable" category:

o 1ep(G) sy stab(kG)
o HTop s SHFIR

o RMod -~y DPETF(R)
e ...

These "stable" categories all have a tensor-triangulated category structure in common.

o Instead of classifying objects "on the nose," classify objects "up to the
tensor-triangulated structure”

o Regard objects as being equivalent if they can build each other using the tt-structure

o Technically after a classification the thick tensor ideals
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Balmer Support and the Classification Theorem

Some Historical Examples

Theorem (Benson-Carlson-Rickard 1997)

Let k be a field of char p dividing the order of a group G. There is a bijection between
{Thick ® -ideals of stab(kG)} — {Specialization Closed subsets of Proj(H® (G, k))}
C— | Vsx)

xeC

Theorem (Neeman-Thomason)

Let R be a commutative ring. There is a bijection
{Thick ® -ideals of DP¢™"(R)} = {Thomason Subsets of Spec(R)}

C — |J supph(x)
xeC
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Balmer Support and the Classification Theorem

Support Theories

o These classifications were accomplished using various notions of "support"

o Greatly clarified and unified via the work of Paul Balmer (2005)
o Given essentially small tt-category K get topological space

Spc(K) ={P C K : P isaprime ideal}

e Equipped with a closed subset supp(x) € Spc(K) forallx € £
o The pair (Spc(K), supp) is the universal space with well-behaved notion of
support

© David Rubinstein
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Classification Theorem and Examples

For mild assumptions on /C there is a bijection

{Thick ® -ideals of K} — {Thomason Subsets of Spc(K)}

C— U supp(x)
xeC

e Thomason subset = union of closed subsets with quasi-compact complement. (In
noetherian context, Thomason= specialization closed)

e (x) =(y) & supp(x) = supp(y)
Goal: Determine the Balmer spectrum for various tt-categories- and therefore deduce the
classification in that context:

e Spc(stab(kG)) = Proj(H*(G, k))
e Spc(DPeTf(R)) = Spec(R)
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Limiting factor of Balmer Support

e Many interesting tt-categories are really some "finite" piece of some "larger"
tt-category
e stab(kG) C Stab(kG)
e SH'™ C SH
e DPf(R) C D(R)

o This "finite" idea can be made precise via the concept of "compact objects"

o The large, non-compact objects, however, are very interesting!

o Objects representing cohomology theories are not compact in SH
o There are major open questions about the structure of the larger objects (e.g.
The telescope conjecture)
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Balmer-Favi Support and Stratification

How to Classify the Big Objects

e Goal = understand the structure of a "large" tt-category 7

o Similar to the compact case, after a classification of the "localizing tensor ideals"

o In this case, there is no "Balmer spectrum" for 7 - less clear how to define a
"universal" notion of support for non-compact objects

e.g.) For x compact, supp(x) will be closed, but this is not expected for
non-compact objects

o Nonetheless, been some success using novel theories of support to develop such
classifications in noetherian contexts (BIK, Neemen, ect)

o In recent work Barthel, Heard and Sanders (BHS, 2021) developed a support theory
for noetherian large tt-categories 7

e There is no "Spc(7)" but can consider Spc(7€)
e The support for arbitrary objects will be a subset of Spc(7°¢)

© David Rubinstein 10
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Balmer-Favi Support and Stratification

Stratification
Sanders, et al use this support to show that for many noetherian tt-categories there is a
bijection
{Localizing ® -ideals of 7} — {Arbitrary subsets of Spc(7 )}
L — U Supp(t)
tel

When such a category admits this bijection, they say the category is stratified.

e Develop a framework for deducing such a bijection

e Involves showing a certain minimality condition at each prime P

e Important point: Can work "locally" at each prime P
Many noetherian categories are stratified in this sense:

Stab(kG) the large stable module category;

D(R) the unbounded derived category for R noetherian ring (fails spectacularly for R
not noetherian);

D(X) for X noetherian scheme

© David Rubinstein 11
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Motives and their Derived Categories

Some Historical Comments

"Motives" were originated by Grothendieck and his students in the 1960s in their
study of algebraic cycles and cohomology theories in algebraic geometry

Idea: should be a "universal cohomology theory" (motivic cohomology theory) in
algebraic geometry

Not much success in constructing this abelian category of motives

Instead Voevodsky was able to construct a "derived category" of motives, denoted
DM(IF)

This theory greatly increased our understanding of motivic cohomology.

Prove some longstanding fundamental conjectures in algebraic geometry (e.g. The
Milnor conjecture and the Bloch-Kato conjecture).
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Motives and their Derived Categories

Necessary Facts about DM (F, R)

o DM(FF, R) is a "large" tensor triangulated category and there is an associated "motive

functor”
R:Sm/F — DM(F,R)

o There are invertible objects R(n) € DM(IF, R) for each n € Z, such that
R(n) ® R(m) = R(n + m) called the Tate Twists.
e The motivic cohomology groups for a variety X are then defined as

H™™(X) = homp g r) (R(X), R(n)[m])

The category DM(F, R) is extremely complex
e Idea: study first a "piece" of the category; the Tate motives

o The localizing subcategory generated by the Tate twists is the (large) category of Tate
motives, denoted by DTM(IF, R).
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Motives and their Derived Categories

Etale Motives

There is a similar story to tell with so called étale motives.

o There is a (large) derived category of étale motives, denoted DM¢!(F, R), again with
an étale motive functor: ) )
Rt : Sm/F — DM®(F, R)

e As before, there are invertible objects R® (n) satisfying the same tensor product
formula

e Again first study DTMé(IF, R), the localizing subcategory generated by étale Tate
twists

o There are analogous étale motivic cohomology groups for a variety X
These two constructions are very similar: there is an "étale sheafification" functor

st : DM(F, R) — DMEt(F, R)

Moreover,
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There is a similar story to tell with so called étale motives.

o There is a (large) derived category of étale motives, denoted DM¢!(F, R), again with
an étale motive functor: ) )
Rt : Sm/F — DM®(F, R)

e As before, there are invertible objects R® (n) satisfying the same tensor product
formula

e Again first study DTMé(IF, R), the localizing subcategory generated by étale Tate
twists

o There are analogous étale motivic cohomology groups for a variety X
These two constructions are very similar: there is an "étale sheafification" functor

st : DM(F, R) — DMEt(F, R)

Moreover,
o Whenever Q C R, ag; is an equivalence of categories.
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My Problem: Stratification for DTM(Q, Z)

The Balmer spectrum of DTM(Q, Z)©

Theorem (Gallauer 2019)

(1) The Balmer spectrum of DTM(Q, Z)€ is the following picture:
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In this picture the specialization relations are pointing upwards.
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My Problem: Stratification for DTM(Q, Z)

The Balmer spectrum of DTM(Q, Z)©

Theorem (Gallauer 2019)

(1) The Balmer spectrum of DTM(Q, Z)€ is the following picture:

my m3 s mp
_ \ \ [
Spe(DTM(Q, Z)°) = e e e
\\ / P
mo

In this picture the specialization relations are pointing upwards.
(2) Spe(DTM(Q, Z)¢) = Spec(Z)
pelaet)

(8) The étale sheafification map induces a map Spec(Z) 54> Spc(DTM(Q, Z)¢) which is
a homeomorphism onto the subspace {m,, ep }
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My Problem: Stratification for DTM(Q, Z)

Remarks on These Computations

m;  ms3 mp
_ \ \ \
Spc(DTM(Q, Z)¢) = e e e e
2 \3\ - P
mo

Let us explain what these my,, e, m are:
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My Problem: Stratification for DTM(Q, Z)

Remarks on These Computations

mp m3 coo TI‘I.p

_ \ \
Spc(DTM(Q, Z)¢) = e e b

\
3 e e
~
mo
Let us explain what these my,, e, m are:
(myp): kernal of map yI*, :DTM(Q,Z)¢ — DTM(Q, Z/pZ)*
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mp m3 coo TI‘I.p
\ \ [

() e3 €p
\\m /
0

Spc(DTM(Q, Z)°) =

Let us explain what these my,, e, m are:

(myp): kernal of map v;, : DTM( (Q 7Z)¢ — DTM(Q,Z/pZ)° . A result of Gallauer is
that this kernal comcnﬁes with those motives whose mod-p motivic cohomology
vanishes.
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Remarks on These Computations

mp m3 coo TI‘I.p
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Spc(DTM(Q, Z)¢) = e e3 cee ep
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Let us explain what these my,, e, m are:

(myp): kernal of map v;, : DTM( (Q 7Z)¢ — DTM(Q,Z/pZ)° . A result of Gallauer is
that this kernal comcnﬁes with those motives whose mod-p motivic cohomology
vanishes.

(ep): kernals of the composite

T™M(@,2)° X5 DTM(Q, Z/pZ)° 25 DTM (@, Z/pZ)*

Again, this kernal coincides with those motives whose mod-p étale cohomology
vanishes.
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My Problem: Stratification for DTM(Q, Z)

Remarks on These Computations

mp m3 coo TI‘I.p
\ \ [

() e3 €p
\\m /
0

Spc(DTM(Q, Z)°) =

Let us explain what these my,, e, m are:
(myp): kernal of map v;, : DTM( (Q 7Z)¢ — DTM(Q,Z/pZ)° . A result of Gallauer is
that this kernal comcnﬁes with those motives whose mod-p motivic cohomology
vanishes.

(ep): kernals of the composite

T™M(@,2)° 5 DTM(Q, Z/pZ)° 2 DTME(Q, Z/pZ)*
Again, this kernal coincides with those motives whose mod-p étale cohomology
vanishes.

(mg): kernal of the rationalization map y* : DTM(Q,Z)¢ — DTM(Q, Q)¢, which
coincides with those motives whose rational motivic cohomology vanishes.
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My Problem: Stratification for DTM(Q, Z)

Remarks on These Computations

my m3 500 mp

_ \ \
Spc(DTM(Q, Z)¢) = e e P

] L
N /
mo

e Morally there are only 3 flavors of primes in Spc(DTM(Q, Z)¢)
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My Problem: Stratification for DTM(Q, Z)

Remarks on These Computations

my m3 500 mp

_ \ \
Spc(DTM(Q, Z)¢) = e e P

] L
N /
mo

e Morally there are only 3 flavors of primes in Spc(DTM(Q, Z)¢)

o Reduce the problem to each "vertical slice" in the spectrum and just consider the 3
primes in each slice
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My Problem: Stratification for DTM(Q, Z)

How To Establish Minimality at the Primes

my m3 mp
_ \ \ \
Spc(DTM(Q, Z)¢) = er_ e3 e
\\m / P
0

(my,): Suffices to pass to the "residue field" DTM(Q, Z/pZ).
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Spc(DTM(Q, Z)°) =

(my,): Suffices to pass to the "residue field" DTM(Q, Z/pZ).

e Gallauer proves that DTM(Q, Z /pZ)¢ = DEH (Z/pZ) is equivalent to the
filtered bounded derived category of Z/pZ
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Spc(DTM(Q, Z)°) =

(my,): Suffices to pass to the "residue field" DTM(Q, Z/pZ).

e Gallauer proves that DTM(Q, Z /pZ)¢ = D}’il (Z/pZ) is equivalent to the
filtered bounded derived category of Z/pZ
e Does this lift to the large categories?

(ep): Have successfully shown minimality for these

o Gallauer showed the local categories at the primes e, are just DTME(Q, Zp)

o Again pass to the residue field DTM¢*(Q, Z /pZ). The Rigidity Theorem
establishes stratification for this category.
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My Problem: Stratification for DTM(Q, Z)

How To Establish Minimality at the Primes

mp m3 ce mp

e e3 500 ep
\\m /
0

Spc(DTM(Q, Z)°) =

(my,): Suffices to pass to the "residue field" DTM(Q, Z/pZ).

e Gallauer proves that DTM(Q, Z /pZ)¢ = D}’il (Z/pZ) is equivalent to the
filtered bounded derived category of Z/pZ
e Does this lift to the large categories?

(ep): Have successfully shown minimality for these

o Gallauer showed the local categories at the primes e, are just DTME(Q, Zp)

o Again pass to the residue field DTM¢*(Q, Z /pZ). The Rigidity Theorem
establishes stratification for this category.

(mo): Reduces to showing minimality in DTM(Q, Q).
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My Problem: Stratification for DTM(Q, Z)

Final Comments and Summery

mp m3 s mp
_ \ \ [
Spc(DTM(Q, Z)¢) = ey €3 20¢ e
\\ / P
mo

e In summary, we want to get a classification for the localizing tensor ideals for
DTM(Q, Z).
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e In summary, we want to get a classification for the localizing tensor ideals for
DTM(Q, Z).

o Using the results of Sanders, et al we are tasked with checking a certain minimality
condition at every prime.
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My Problem: Stratification for DTM(Q, Z)

Final Comments and Summery

mp m3 s mp
_ \ \ [
Spc(DTM(Q, Z)¢) = ey €3 20¢ e
\\ / P
mo

e In summary, we want to get a classification for the localizing tensor ideals for
DTM(Q, Z).

o Using the results of Sanders, et al we are tasked with checking a certain minimality
condition at every prime.

o In this case, we can first take vertical slices of the spectrum, and then check
minimality at local categories for mod p and rational coefficients
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